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Betting Game Binonmial Martingale Application Term Structure

Horse Gambling Example

• Horse A has a 25% chance of winning the race, B has 75%

• On the market there are $5000 betting for A, and $10000
betting for B.

• How should the book maker set the odds for A and B
assuming no margin?

• Using the market supply and demand, his profit is not
dependent on the actual outcome.

• Using the actual probability, his short-term PnL will be
dependent on the race outcome

• so how should he decide on the odds?
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Power of Arbitrage

As seen from the house gambling example, arbitrage is a better
pricer than expectation. Financial instrument pricing is
determined in the same way.

• Arbitrage opportunity would be a (self-financing) trading
strategy which started with zero value and terminated at
some definite date T with a positive value.

• How do you price the share of Apple?

• How do you price the call option on Apple share?

• How to price 1 million Apple shares?
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No Arbitrage Pricing

• No-arbitragee implies no way of making riskfree profits.

• Arbitrage is a stronger pricing argument than expectation.

• Arbitrage activity in the market will drive price to no-arb
pricing.
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Betting/Trading strategy

What are the elements that goes into a betting/trading
strategy?

• instrument/Rule: what to bet. What are the possible
outcomes that would be known later.

• quantity: how much to bet.

• odds/market price: What are the payoffs for the pay for
each possible outcome?

• Rule:pre-visibility: Bets off before the outcome is known.
No cheating
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Martingale: double down stragetgy

For a fair coin toss ( odds at 1:1 ) bet, bet $1 for head, and
double the bet each time tails shows until the 1st head shows.
This will give you a sure profit of $1, as long as you don’t go
broke before the 1st heads shows.

• Can it be carried out in Marina Bay Sands?

• Why martingale is not an arbitrage?

— not self-financing
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Binomial representation theorem (I)

• A random process is described using binomial tree nodes
for all possible future values.

• A probability set for the above tree, called measure.

• Filtration Fi is the historical path upto i. This can be seen
as information set available up to time i.

• Claim X is a function depends on FT .

• EQ(X|Fi), converts a claim into a process, i.e. price of the
claim at each t.

• A previsible process/trading stragegy

• A martingale measure. ( EP(Sj |Fi) = Si, for all i ≤ j. )
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Binomial representation theorem (II)

Theorem
Suppose the measure Q is such that the binomial price process S
is a Q-martingale. If N is any other Q-martingale, then there
exists a previsible process h such that

Ni = N0 +

i∑
k=1

hk∆Sk,

where ∆Sk := Si − Si−1 is the change in S from time i− 1 to i,
and hi is the value of h at the appropriate node at time i.
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Binomial representation theorem (III)

• As a result, all claimes can be fully replicated using simple
trading strategies and therefore strongly priced by
no-arbitrage argument. This is also called market
completeness.

• arbitrage free = market complete = existence of unique
Equivalence of Martingale Measure

• The theorem can be extended to continuous-time version.
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Brownian motion

Definition
The process W = (Wt : t ≥ 0) is a P-Brownian motion if and
only if:

1. Wt is continuous, and W0 = 0,

2. the value of Wt is distributed, under P, as a normal
random variable N(0, t)

3. the increment Ws+t −Ws is distributed as a normal
N(0, t), under P, and is independent of Fs, the history of
what the process did up to time s.
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Stochastic process

Definition
A stochastic process X is a continous process ( Xt : t ≥ 0) such
that Xt can be written as

Xt = X0 +

∫ t

0
σsdWs +

∫ t

0
µsds,

where σ and µ are random F-previsible process such that∫ t
0 (σ2

s + |µs|)ds is finite for all times t (with probability 1 ). The
differential form of this equation can be written

dXt = σtdWt + µtdt.
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Itô’s formula

If X is a stochastic process, satisfying dXt = σtdW + µtdt, and
f is a deterministic twice continously differentiable function,
then Yt := f(Xt) is also a stochastic process and is given by

dYt =
(
σtf
′(Xt)

)
dWt +

(
µtf
′(Xt) +

1

2
σ2
t f
′′(Xt)

)
dt.

Example

If Xt = exp(σWt), then what is dXt?

dXt = σXtdWt +
1

2
σ2Xtdt.
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Radon-Nikodym derivative

Definition
Equivalence
Two measures P and Q are equivalent if they operate on the
same sample space and agree on what is possible.

P (A) > 0⇔ Q(A) > 0.

Definition
Given P and Q equivalent measures and a time horizon T, we
can define a random variable dQ

dP defined on P-possible paths,
taking positive real values, such that

1. EQ(XT ) = EP(dQdPXT ), for all claims XT knowable by time
T .

2. EQ(Xt|Fs) = ξ−1
s EP(ξtXt|Fs), s ≤ t ≤ T,

where ξt is the process EP(dQdP |Ft).
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Cameron-Martin-Girsanov theorem

Theorem
If Wt is a P-Brownian motion and γt is a F-previsible process
satisfying the boundedness condition EP exp(1

2

∫ T
0 γ2

t dt) <∞,
then there exists a measure Q such that

1. Q is equivalent to P

2. dQ
dP = exp

(
−
∫ T

0 γtdWt − 1
2

∫ T
0 γ2

t dt
)

3. W̃t = Wt +
∫ t

0 γsds is a Q-Brownian motion.

In other words, Wt is a drifting Q-Brownian motion with drift
−γt at time t.
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Martingale representation theorem

Definition
A stochastic process Mt is a martingale with respect to a
measure P if and only if

1. EP(|Mt|) <∞,∀t
2. EP(Mt|Fs) = Ms,∀s ≤ t.

Theorem
Suppose that Mt is a Q-martingale process, whose volatility σt
satisfies the additional condition that it is (with probability one)
always non-zero. Then if Nt is any other Q-martingale, there
exists an F-previsible process φ such that

∫ T
0 φ2

tσ
2
t dt <∞, a.s.,

and N can be written as

Nt = N0 +

∫ t

0
φsdMs.

Further φ is (essentially) unique.
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Construction of Dynamic Hedging Strategy

Under no-arb pricing, we can fully hedge any contigent claim
using following steps:

• The Portfolio (φ, ψ), where φt and ψt is the number of
units of security and bond we hold at t. φ is F-previsible
(in other words, left continuous).

• Self-financing SDE dVt = φtdSt + ψtdBt.

• Suppose we are in a market of a riskless bond B and a
risky security S with volatility σt, and a claim X on events
up to time T . A replication strategy for X is a
self-financing portfolio (φ, ψ) such that

∫ T
0 σ2

t φ
2
tdt <∞ and

VT = φTST + ψTBT = X.
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Black Scholes Formula
We assume a bond price Bt and a stock price St that follow

St = S0 exp(σWt + µt)

Bt = exp(rt)

1. Find a measure Q under which Zt := B−1
t St is a

martingale. Bt is therefore the numeraire.

2. Find the process Et = EQ(B−1
T X|Ft).

3. Find a previsible process φ, such that dEt = φtdZt

4. We then have

Vt = BtEQ(B−1
T X|Ft)

V0 = e−rTEQ(X)

which can be easily solved analytically.
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Application to FX: assumptions

We assume constant interest rate for domestic and foreign
currency, and the exchange rate expressed in units of domestic
currency per 1 foreign currency follows GBM.

Bt = ert

Dt = eut

St = S0 exp(σWt + µt)

for some Wt a P-Brownian motion and constants r, u,σ, and µ,
where Dt is the foreign cash bond.
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Application to FX: approach

• Choose the numeraire: Bt.

• Make all tradables in this numeraire a martigale at the
same time.
• demostic bond becomes 1.
• foreign bond is not tradable in domestic ccy
• fx rate itself is not a tradable
• foreign bond multiply by the fx spot is. Zt = B−1

t StDt

needs to be a martingale.

• form the martigale process of the derivative value
Et = EQ(B−1

T X|Ft).
• find the hedging strategy φt, s.t. dEt = φtdZt.
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Application to FX: general formula

• original converted foreign bond process in numeraire Bt:

Zt = S0 exp(σWt + (µ+ u− r)t)

• we need to make it into a martingale by changing the drift:

Zt = S0 exp(σW̃t −
1

2
σ2t)

• therefore the fx process becomes via the same drift change:

St = S0 exp(σW̃t + (r − u− 1

2
σ2)t)

• so we have the derivative pricing formula:

Vt = BtEQ(B−1
T X|Ft)
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Application to FX: forward

Let’s price a forward VT = ST −K using the formula.

Vt = BtEQ(B−1
T X|Ft)

V0 = e−rT (EQ(ST )−K)

V0 = e−rT (S0e
(r−u)T −K)
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Application to FX: Call option
Let’s price a call option VT = (ST −K)+ using the formula.

Vt = BtEQ(B−1
T X|Ft)

V0 = e−rT (EQ(ST −K)+

V0 = e−rT (F0N(d1)−KN(d2))

Illustration of expectation of lognormal distribution:

FT = F0e
σ
√
TW̃T− 1

2
σ2T :

EQ(1FT>K) = P (FT > K)

= P (F0e
σ
√
TW̃T− 1

2
σ2T > K)

= P (W̃T >
ln K

F0
+ 1

2σ
2T

σ
√
T

)

= P (W̃T <
ln F0

K −
1
2σ

2T

σ
√
T

) = N(d2)
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Application to FX: view from foreign side

Let’s price a put option from the foreign investor point of view.
A call on 1 EUR for 1.25 USD should be the same as 1.25 put
on 1 USD for 0.8 EUR. Assuming spot and forward are all 1,
and interest rates are all 0. We have

C = FN(d1)−KN(d2) = N(d1)− 1.25N(d2)

1.25P̃ = 1.25(K̃N(−d̃2)− F̃N(−d̃1)) = N(−d̃2)− 1.25N(−d̃1)

d1 =
ln F

K + 1
2σ

2T

σ
√
T

=
ln 0.8 + 1

2σ
2T

σ
√
T

= −
ln 1.25− 1

2σ
2T

σ
√
T

= −d̃2

Whether we use domestic measure or foreign one, the pricing
and hedging is consistent.
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Application to Quantos: Assumptions

Assuming a foreign asset, and fx process both follow lognormal
process, with constant interest rates.

dSt = µStdt + σ1StdW1(t)

dCt = vCtdt + σ2CtdW2(t)

dW1 and dW2 is correlated at ρ.
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Application to Quantos: Numeraire and tradables

• Bt, numeraire.

• CtDt, dollar tradable of foreign bond

• CtSt, dollar tradable of foreign asset

We need to do a change of measure so that all of the tradables
are martingales

Yt = B−1
t CtDt

Zt = B−1
t CtSt
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Application to Quantos: formula

The result of the change is expected: fx process same as the fx
option case, quantoed asset process just change the drift, due to
correlation to fx process.

dSt = (u− ρσ1σ2)Stdt + σ1StdW̃1(t)

dCt = (r − u)Ctdt + σ2CtdW̃2(t)

The pricing formula is as usual:

Vt = BtEQ(B−1
T X|Ft),

where X is a function of ST like a forward or call.
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Application to Composite

• What is the tradable?

• What is the process?

• Using a single composite process with a simple payoff
generates the same answer as using the quanto processes
with a composite payoff
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Application to Interest Rate

P (t, T ) discount bond price with maturity T at t

R(t, T ) bond yield ( continuous compounding ).

R(t, T ) = − lnP (t,T )
T−t
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Additional IR basics

A bond price can be computed from today’s (instantaneous)
forward rates or the spot rate.

• f(t, T ) = − ∂
∂T lnP (t, T )

• r(t) = f(t, t)

• P (t, T ) = exp(−
∫ T
t f(t, u)du)

• R(t, T ) = lnP (t,T )
T−t

• P (t, T ) = exp(−(T − t)R(t, T ))

Is it correct to say P (t, T ) = exp(−
∫ T
t r(u)du)?
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HJM 1F

Assuming all forward rates are driving by the same random
source, but can have different drift and vol.

• df(t, T ) = σ(t, T )dWt + α(t, T )dt

• f(t, T ) = f(0, T ) +
∫ t

0 σ(s, T )dWs +
∫ t

0 α(s, T )ds, 0 ≤ t ≤ T
We skip the technical conditions here, but basically things
should be finite.
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Short Rate, Bonds, and Numeraire
We can choose any tradable asset as numeraire. For
convenience we normally use either the cash bond/money
market account Bt, or some discount bond P (t, T ).

• r(t) = f(0, t) +
∫ t

0 σ(s, t)dWs +
∫ t

0 α(s, t)ds

• Bt = exp(
∫ t

0 rsds) =

e(
∫ t
0 (

∫ t
s σ(s,u)du)dWs+

∫ t
0 f(0,u)du+

∫ t
0

∫ t
s α(s,u)du ds)

• P (t, T ) = exp(−
∫ T
t f(t, u)dt) =

e−(
∫ t
0 (

∫ T
t σ(s,u)du)dWs+

∫ T
t f(0,u)du+

∫ t
0

∫ T
t α(s,u)du ds)

• Z(t, T ) = P (t,T )
Bt

= e
∫ t
0 Σ(s,T )dWs−

∫ T
0 f(0,u)du−

∫ t
0

∫ T
s α(s,u)du ds,

where Σ(t, T ) = −
∫ T
t σ(t, u)du.
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Change of Numeraire

Using Ito lemma, we have

dZ(t, T ) = Z(t, T )
(

Σ(t, T )dWt + (1
2Σ2(t, T )−

∫ T
t α(t, u)du)dt

)
.

Using Girsanov theorem, we have

dZ(t, T ) = Z(t, T )Σ(t, T )dW̃t

W̃t = Wt +

∫ t

0
γsds

γt =
1

2
Σ(t, T )− 1

Σ(t, T )

∫ T

t
α(t, u)du

Note the γs is computed from α(t, T ) and σ(t, T ), but cannot
not depend on T , so this puts restrictions on the functional
form of real world drift and vol.
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Rates under Q
We should have 0 by differentiate γ against T , so

α(t, T ) = σ(t, T )(γt − Σ(t, T ))

df(t, T ) = σ(t, T )dW̃t − σ(t, T )Σ(t, T )dt

r(t) = f(0, t) +

∫ t

0
σ(s, t)dW̃s −

∫ t

0
σ(s, t)Σ(s, t)ds

• All bonds have to be made into martingale at the same
time, so the market is arbitrage free.

• Real world drift does not matter, and the vol remains the
same. Drift of the bonds goes to 0 not the rates.

• Short rate models can be expressed in HJM format ( HW,
CIR, BK ) and can have closed form solution.
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Application to Commodity
In commodity, we need to model the forward/futures curve like
rates. We know all futures have zero drift.

• Future price equals to forward price, when correlation to
margin interest is assumed to be zero.

• Forward price process has zero drift.

• Forward contract Bt(Ft −K) and futures contract
Mt(Ft −K) are both tradables. Bt is usual zcb, while Mt is
a money market account that earns risk free interest on the
balance.

• Forward contract value with zcb as the numeraire B−1
t BtFt

is a martingale.

• Similarly future contract with either Bt or Mt as numeraire
M−1
t MtFt is also martingale. In fact, ratio of any two

tradables’ value is a martingale under complete market no
arbitrage.
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Assuming a lognormal model for com future, we have

dF (t, T )

F (t, T )
= σ(t, T )dW̃ (t)

It is easy to generalize it to 2-factor model:

dF (t, T )

F (t, T )
= σ1(t, T )dW̃1(t) + σ2(t, T )dW̃2(t)

But good models should be able to both fit/generate realistic
scenarios and have parameters that can be controlled with some
interpretation. People tends to prefer the model to be specified
in a certain way that relates to real world observables (e.g.
below Gabillon model), then solve by transform back to a
general problem (e.g. Anderson ).

dF (t, T ) = F (t, T )(σS(t)e−λ(T−t)dW̃1(t) + σLdW̃2(t))
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